We're back after a server migration that caused effbot.org to fall over a bit harder than expected. Expect some glitches.

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of tokens, generated by the lexical analyzer. This chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bit ASCII character set for program text.

New in version 2.3: An encoding declaration can be used to indicate that string literals and comments use an encoding different from ASCII. For compatibility with older versions, Python only warns if it finds 8-bit characters; those warnings should be corrected by either declaring an explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.

The run-time character set depends on the I/O devices connected to the program but is generally a superset of ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1 (an ASCII superset that covers most western languages that use the Latin alphabet), but it is possible that in the future Unicode text editors will become common. These generally use the UTF-8 encoding, which is also an ASCII superset, but with very different use for the characters with ordinals 128-255. While there is no consensus on this subject yet, it is unwise to assume either Latin-1 or UTF-8, even though the current implementation appears to favor Latin-1. This applies both to the source character set and the run-time character set.

Line structure

A Python program is divided into a number of logical lines.

Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line is constructed from one or more physical lines by following the explicit or implicit line joining rules.

Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files, any of the standard platform line termination sequences can be used — the Unix form using ASCII LF (linefeed), the Windows form using the ASCII sequence CR LF (return followed by linefeed), or the Macintosh form using the ASCII CR (return) character. All of these forms can be used equally, regardless of platform.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for newline characters (the \n character, representing ASCII LF, is the line terminator).

Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored by the syntax; they are not tokens.

Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding[=:]\s*([-\w.]+), this comment is processed as an encoding declaration; the first group of this expression names the encoding of the source code file. The recommended forms of this expression are

# -*- coding: <encoding-name> -*-

which is recognized also by GNU Emacs, and

# vim:fileencoding=<encoding-name>

which is recognized by VIM. In addition, if the first bytes of the file are the UTF-8 byte-order mark ('\xef\xbb\xbf'), the declared file encoding is UTF-8 (this is supported, among others, by Microsoft’s notepad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical analysis, in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are converted to Unicode for syntactical analysis, then converted back to their original encoding before interpretation starts. The encoding declaration must appear on a line of its own.

Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
   and 1 <= day <= 31 and 0 <= hour < 24 \
   and 0 <= minute < 60 and 0 <= second < 60:   # Looks like a valid date
        return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart',      # These are the
               'April',   'Mei',      'Juni',       # Dutch names
               'Juli',    'Augustus', 'September',  # for the months
               'Oktober', 'November', 'December']   # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is generated). During interactive input of statements, handling of a blank line may differ depending on the implementation of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one containing not even whitespace or a comment) terminates a multi-line statement.

Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above. Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is pushed on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
        # Compute the list of all permutations of l
    if len(l) <= 1:
                  return [l]
    r = []
    for i in range(len(l)):
             s = l[:i] + l[i+1:]
             p = perm(s)
             for x in p:
              r.append(l[i:i+1] + x)
    return r

The following example shows various indentation errors:

 def perm(l):                       # error: first line indented
for i in range(len(l)):             # error: not indented
    s = l[:i] + l[i+1:]
        p = perm(l[:i] + l[i+1:])   # error: unexpected indent
        for x in p:
                r.append(l[i:i+1] + x)
            return r                # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the indentation of return r does not match a level popped off the stack.)

Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).